Disorders of the sacroiliac joint

CHAPTER CONTENTS

Introduction ............................................ 603
Sacroiliac arthritis .................................... 603
  Ankylosing spondylitis ............................ 603
  Sacroilitis ......................................... 604
  Psoriasis ......................................... 606
  Reiter’s syndrome ................................ 606
  Septic arthritis .................................. 606
  Gout .............................................. 606
  Osteoarthritis ................................... 607
  Sacroiliac joint syndrome ...................... 607
  Bony disorders of the pelvis .................... 609
  Tumours ......................................... 609
  Fractures of the sacrum ......................... 610

Introduction

Sacroiliac joints are true synovial joints and thus subject to various forms of arthritis and degenerative processes. Although they are relatively immobile – the joint can only rotate 3–5° in the younger subject – they may be susceptible to mechanical trauma.

After the fifth decade of life, fibrosis takes place between the cartilage surfaces and by the seventh decade the joint has usually undergone fibrous ankylosis. The available range of movement decreases as fibrous ankylosis increases.¹

Most pain in the sacroiliac or gluteal region does not originate from the sacroiliac joint but is referred pain of discodural origin (see Ch. 33); every diagnosis of a ‘sacroiliac lesion’ should be made with caution and only after other common sources of ‘sacroiliac pain’ have been ruled out.

The pathological conditions affecting the sacroiliac joint are inflammatory and mechanical. The latter is usually referred to as ‘sacroiliac joint syndrome’.² The exact nature of the syndrome is not known but it is generally accepted that mechanical pain stems from minor subluxations and/or ligamentous strain.

Sacroiliac arthritis

In the assessment of patients with pain in one buttock, perhaps radiating to the back of thigh and calf, the clinician must always bear in mind the possibility of an inflammatory lesion of the sacroiliac joint. Sacroilitis is usually the first manifestation of ankylosing spondylitis but may also be associated with inflammatory bowel disease, psoriasis and other more uncommon rheumatic disorders. Sacroiliac gout has been observed. Pyogenic infection of the sacroiliac joints is rare.

Ankylosing spondylitis

Introduction

Once considered a rare disease, ankylosing spondylitis (AS) is now recognized as relatively common, affecting up to 0.5–1.0% of the population.³ The ratio of occurrence in males and females is approximately 5:1, although it was previously thought to be 20:1. Several studies now suggest that it may occur almost as frequently in females as in males, although in a milder form and with more peripheral localization.⁴,⁵ The disease is characterized by fibrosis and ossification of ligaments and capsules rather than the joint destruction so typical of rheumatoid disease.⁶

Ankylosing spondylitis almost invariably starts at the sacroiliac joints and then extends upwards to involve the spine at increasingly higher levels. However, the sacroilitis very often remains silent. It has been estimated that no more than 1 case in 10 ever has pain in the buttock. Most spondylitis begins as a diffuse lumbar ache, and sometimes the earlier symptoms
been developed during recent decades. These criteria are stages when only the pelvis is affected. Clinical criteria have proven its value in the early detection of sacroiliac disease. However, routine clinical examination of the lumbar spine performed carefully can always detect the lesion. It is well recognized that AS begins at the sacroiliac joints but it is not widely appreciated that the disease may be silent here. Many patients with advanced disease cannot recollect ever having pain in the sacroiliac region or the buttock. Even if sacroilitis causes symptoms at its onset, these may be taken for an S1 disc lesion. However, routine clinical examination of the spine performed carefully can always detect the lesion.

Sacroilitis

It is well recognized that AS begins at the sacroiliac joints but it is not widely appreciated that the disease may be silent here. Many patients with advanced disease cannot recollect ever having pain in the sacroiliac region or the buttock. Even if sacroilitis causes symptoms at its onset, these may be taken for an S1 disc lesion. However, routine clinical examination of the spine performed carefully can always detect the lesion.

Signs

Given the similarity with S1 or S2 root compression, the index of suspicion usually remains low and the diagnosis is often missed (Table 43.1).

During the examination in a standing position no suspicion arises. There may be a slight increase in gluteal pain during extension and bending towards the painful side; flexion is limited because of increasing pain in the buttock and thigh; and sometimes a slight deviation towards the painful side can be noted during flexion. Straight leg raising may also cause pain at the end of range.

It is only when the anterior part of the sacroiliac joint is tested (see Ch. 41) that the diagnosis becomes obvious. Unilateral or gluteal or posterior crucial pain during the test incriminates the sacroiliac joint. This manoeuvre is an extremely sensitive method of deciding whether the sacroiliac joint is affected, and a positive distraction test often precedes radiological evidence of sacroiliac arthritis by years. Although many other tests for the sacroiliac joints have been described, the distraction technique as described earlier is the most significant test of the status of the joint; it applies immediate stress to the anterior part of the joint, without using a lever – distraction forces using the patient’s femur as a lever are very non-specific and should therefore not be used as screening tests. Because of the specificity of the sacroiliac distraction test, it is an essential part of the routine clinical examination of the lumbar spine.

If the patient is examined during a flare-up, passive and resisted hip movements can also cause gluteal pain, especially passive external rotation and resisted flexion, abduction and extension.

Although some authors find tenderness over the sacroiliac joint highly indicative of the existence of sacroiliac arthritis, we believe that palpating for tenderness adds no further information and only confuses the examiner. First, the joint, covered as it is by the overhang of the ilium and the sacral extent of

### Box 43.1

**Modified ‘New York’ criteria for ankylosing spondylitis (AS)**

**Clinical criteria**
- Low back pain and stiffness for more than 3 months not relieved by rest
- Symmetrical limitation of lumbar movement
- Limitation of chest expansion to 2.5 cm

**Radiological criteria**
- Bilateral sacroiliitis, grade II or more
- Unilateral sacroiliitis, grades III–IV

Definite AS is diagnosed if the radiological feature is associated with at least one of the clinical criteria.

Probable AS is considered if three clinical criteria are present with at least one of the clinical criteria.

Positive results of screening tests are highly indicative of the existence of sacroiliac arthritis.
the sacrospinalis muscle, remains beyond the direct reach of the palpating finger. Second, the sacroiliac region is a common site for referred tenderness in lumbar discodural conflicts.

Further examination

Radiological evidence of sacroiliitis is accepted as being obligatory for the diagnosis of AS. However, the clinical symptoms may predate the radiological abnormalities by months or even years. In the early stages, when radiological signs are minimal and of questionable significance, it may help to use computed tomography (CT) for demonstrating joint narrowing and fusion. Further evolution of the process results in superficial erosion, together with focal sclerosis of subchondral bone. Further proliferative changes result in irregular bridging across the articular cavity. This causes blurring and indistinct margins on both sides of the joint. Finally, the radiograph shows complete osseous fusion.

The best way to detect active sacroiliitis is on MRI. An MRI is considered as ‘positive’ if the areas of bone marrow oedema (BME) are located at typical sites, i.e. they are periarticular to the sacroiliac joints. When only one BME lesion is visible on an MRI slice, it should be clearly visible on consecutive slices. Enthesitis, capsulitis and synovitis reflect active inflammation as well and are certainly compatible with AS; however, they are not sufficient for a ‘positive’ MRI if present without concomitant BME.

Association with HLA-B27

The association between the genetic marker HLA-B27 and AS is well known. The frequency of HLA-B27 in healthy populations is between 1% (Japanese and African) and 14% (Caucasian), whereas the marker is present in 90% of the AS population. However, the presence of HLA-B27 plays little or no role in diagnosis of the disease: a patient with repeatedly normal radiographs is unlikely to have the disease, regardless of HLA status; in contrast, a B27-negative individual with symptoms suggesting AS has the disease if the radiograph shows the typical changes.

Natural history

The prognosis for an individual is difficult to predict. In some patients the disorder is limited to the pelvis, whereas others...
quickly develop spinal and extraskeletal disease. The younger the patient is at the age of onset, the worse the outcome, and men usually fare worse than women.\textsuperscript{31} When sacroiliac arthritis appears after the age of 25 years, the disease is likely to follow a mild course: bilateral sacroilitis continues flaring up and subsiding for some years until bony ankylosis is complete and the pain disappears. If the disease spreads upwards, its spread is very slow and the thoracic spine is only affected when the patient is 40 or 50 years of age. In these patients the cervical spine usually remains unaffected and the hips retain full mobility. In contrast, when sacroiliac arthritis appears before the age of 20 years, or spondylitis has reached the lumbar spine before the age of 25 years, early and severe disablement is very probable; pain and stiffness spread upwards along the spine very quickly and there is also a strong chance of hip involvement within 20 years of onset.\textsuperscript{32}

**Treatment**

It is vital for patients to have some knowledge of the natural history of the disease. They should be told that the concept of inevitable, progressive stiffening of the joints, ending in complete ankylosis and crippling disability, is not correct. The diagnosis of AS is usually not as serious as is generally believed. The patient should be made aware that the majority have a good prognosis for a normal social, family and professional life, and that the disease leads to incapacity in only a few cases.

No specific treatment of a curative nature presently exists. The aim of treatment is therefore preventive and symptomatic: avoidance of pain and deformity.

In order to prevent further deformity, the patient should adopt an appropriate routine. A strict daily routine of positioning and extension exercises is more valuable than physiotherapy. Sleeping on a hard mattress and avoiding lying bent on the side are basic. Lying face downwards on a rigid surface at least once a day for half an hour is also recommended. During the day, extension exercises should be performed as often as possible. Attention should also be paid to posture at work and all opportunities for mobility exploited. Swimming is the best routine sport.

Pain and inflammation are treated by non-steroidal anti-inflammatory drugs (NSAIDs). Indomethacin is considered the drug of choice. The patient must be informed that therapy should be continuous and that the purpose of medication is to allow normal activities to be pursued and the poorly localized symptoms and signs. The condition should be considered in cases of acute or subacute onset of pain in the gluteal region, hip or low back, accompanied by fever. An apparent acute abdomen may be present, especially in children.\textsuperscript{33} The disease may also present with symptoms and signs of femoral or sciatic nerve root irritation if the distended anterior joint capsule comes into contact with the lumbosacral plexus.

The diagnosis is strongly suspected when the ‘sign of the buttock’ is found during clinical examination of the back (see p. 637). Roentgenograms are often normal. CT scan and MRI may be useful tools but radionuclide scanning with \textsuperscript{99m}Tc or \textsuperscript{67}Ga usually affords early confirmation of the condition.\textsuperscript{45-47} Generally, antibiotic treatment leads to complete recovery.

**Gout**

Gout is usually considered to be a disorder of the peripheral joints. However, since 1965, it has been recognized that the sacroiliac joint is also radiologically affected at a late stage in a significant percentage (7–17%) of patients with tophaceous gout.\textsuperscript{48,49} The sacroilitis usually remains clinically silent, acute attacks being rare.\textsuperscript{50}
Osteoarthrosis

The incidence of degenerative arthritis in the sacroiliac joints increases with age. It is not considered to be a cause of symptoms. Osteoarthrosis of the sacroiliac joints is a radiological finding only and has no clinical significance (Cyriax: p. 372).

Sacroiliac joint syndrome

Introduction

The ability of mechanical lesions of the sacroiliac joint to cause backache and referred pain to the buttock and posterior leg was first recognized by Goldthwait and Osgood in 1905.

Some schools of thought have put great emphasis on the joint and consider the sacroiliac joint syndrome as a common source of low back and pelvic pain. Although it is generally accepted that most pain in the sacroiliac region is of dural origin and has nothing to do with an actual lesion of the joint, it is logical to accept the sacroiliac joint as a prime cause of pain because it is a synovial joint and thus subject to the same dysfunctional conditions that affect other synovial joints. It is not difficult to accept ligamentous sprain and the same dysfunctional conditions that affect other synovial joints. It is not difficult to identify a ‘blocked sacroiliac subluxation’ as the main cause of the dysfunction.

Numerous tests to detect dysfunction of the sacroiliac joint have been described in the chiropractic and manual medicine literature. Although commonly used, many of these tests are difficult to perform or to interpret, and consequently their intertester reliability is low (see p. 599). In particular, those tests that assess motion (or the lack of it) in a sacroiliac joint are not reliable. Pain provocation tests – stressing the structures in an attempt to reproduce the patient’s symptoms – have a much better intertester reliability and can be used to detect sacroiliac joint syndrome.

We therefore do not discuss blocked sacroiliac joints as a possible source of sacroiliac dysfunction. The issue is too controversial and today there exists no clear evidence for the disorder. Sacroiliac strain, by contrast, is a well-delineated entity with typical signs and symptoms. Recent studies demonstrated temporary pain relief after local blocks of the sacroiliac joint, thus confirming the sacroiliac joint as a real source of low back pain. However, it is worth repeating that the diagnosis requires typical physical findings and that tenderness over the sacral sulcus and the posterior sacroiliac joint line are not sufficient in themselves to make the diagnosis.

History

Sacroiliac joint syndrome or strain usually occurs in women between the ages of 15 and 35 years. The ligaments may have been strained by a fall on the buttocks or a motor vehicle accident. Other more trivial mechanisms of injury may also be linked to the development of sacroiliac joint syndrome, such as stepping into an unexpected hole or miscalculating a height.
The Sacroiliac Joint and Coccyx

Training

Training programme

Vleeming et al consider an inadequate ‘force closure’ of the sacroiliac joints as an important cause of sacroiliac strain. Force closure is defined as the compressive stabilizing forces exerted by ligaments and coupled bilateral gluteal and back muscles. The authors hypothesize that ligaments alone are not capable of transferring lumbosacral load effectively from the spine to the iliac bones. This is particularly the case in heavy load situations and conditions of sustained load, such as sitting and standing for a long time in a relatively counternutated position of the sacrum. Muscle weakness and inadequate coordination between muscles diminish force closure, which consequently increases the load on the pelvic ligaments. The ligaments become strained, leading to pain and laxity.

The authors advise a specific training programme as one of the treatment measures to compensate for the lack of force closure. Strength and coordination of the gluteus medius and contralateral latissimus dorsi should be trained. The erector spinae, the multifidi muscle fascicles and the oblique and transverse abdominals should also be part of the active stabilizing training programme because of their direct or indirect attachments with the sacroiliac ligaments.

Belt

The symptoms may be abolished permanently if the joint and the ligaments are protected for a month or so by the wearing of an appropriate belt. The most suitable type is a very tight, non-elastic 6 cm wide belt, placed around the pelvis between the iliac crest and the greater trochanter (Fig. 43.1).

The biomechanical effects of such a belt in human pelvis–spine preparations were studied by Vleeming et al, who found that it led to a significant decrease in rotation at the sacroiliac joints. Both the location of the belt and the degree of loading were crucial. An optimal decrease in movement was reached with a belt worn at the level just cranial to the trochanter.

The active straight leg raising test, described by Mens et al, seems to have some prognostic value. Lying supine, the patient is asked to lift the leg about 5 cm off the couch. In a serious pelvic dysfunction the patient is unable to do so or the strength on one side is considerably less. The test is repeated after stabilizing the pelvis with a belt or by manual pressure on the iliac spines from the lateral side. If this lateral pressure converts a painful active straight leg raising test into a painless one, wearing a belt will lead to a good result.

Sclerosing injections

If wearing a pelvic belt fails to improve the patient’s condition, sclerosing injections into the posterior sacroiliac ligaments are indicated. We use Ongley’s solution (2% phenol, 25% dextrose, 15% glycerol). This mixture has a good safety record and, apart from considerable pain for up to 2 days after the injection, it causes no side effects. It induces an inflammatory response, which leads to fibroblast proliferation and new collagen production (see pp. 112–114). Because of pain, the solution must be mixed with 2% lidocaine, in a proportion of 80% sclerosant and 20% lidocaine.

Usually all the sacroiliac ligaments are treated at their ligamentoperiosteal junction. Although it is possible to be very selective and to infiltrate only small groups of ligaments, better results will be achieved if all the ligaments on both sides are infiltrated.

Technique

A 10 mL syringe, filled with 8 mL sclerosant and 2 mL lidocaine, is fitted to a 7 cm long needle.

The skin is punctured at the level of the tip of the first sacral spine. From here, the following ligaments on both sides can be infiltrated: the posterior sacroiliac, the interosseous sacroiliac, the sacrotuberous and the sacrospinous (the latter two form the sacral attachments). To reach the posterior sacroiliac ligament, the tip of the needle is directed at an angle of 30° to the skin and thrust laterally until it touches bone. Four to five small injections are made along the posterior aspect of the posterior superior spine. It should be stressed that no fluid is introduced unless the tip of the needle is felt to impinge on bone (Fig. 43.2).

The needle is then partly withdrawn and reinserted at an angle of about 45° to the horizontal to reach the iliac attachments of the interosseous sacroiliac ligaments. Bone is reached at a depth of 5–7 cm, where small infiltrations are made.
the border, deeply and superficially, by multiple withdrawals and reinserations. Care is taken to inject only when the needle touches bone.

Follow-up
There is considerable pain at the time of injection but the anaesthetic soon takes effect. After an hour and subsequently for up to 2 days, the back is painful, sometimes to such an extent that the patient is forced to rest in bed. This unpleasant reaction usually lasts no longer than 2 days.

The infiltration is repeated twice, at weekly intervals. For 6 weeks after the last infiltration, the patient should avoid all movements and postures that strain the sacroiliac joints, such as standing, bending and climbing stairs. The result should be judged after 6 weeks. Insufficient relief indicates the need for another infiltration.

Bony disorders of the pelvis

Tumours

Sacral tumours, both primary and secondary, are rare lesions. They often escape early diagnosis.

Most patients with sacral tumours have a non-specific complaint of low back pain. However, the history will reveal some unusual features typical of non-mechanical lesions in the lumbar spine, currently referred to as ‘warning symptoms’ (see Ch. 39):

- Continuous pain, not altered by changing positions or activities
- Increasing pain, slowly getting worse
- Expanding pain
- Bilateral sciatica.

Late in the course of a serious sacral lesion, disturbance of urinary and/or bowel control may occur.
Clinical examination may reveal local tenderness and swelling. Both lumbar examination and sacroiliac pain provocation tests may be positive. The most striking clinical finding is usually the appearance of a 'sign of the buttock' (see p. 637), which draws immediate attention to a serious pelvic lesion.

Apart from metastases, a sacrococcygeal chordoma is the most common type of malignant sacral tumour. The neoplasm is believed to take its origin from remnants of the notochord; it grows slowly but is locally infiltrative and destructive. Symptoms may initially be mild and may present months or years before the diagnosis is made. As the disease progresses, pain may become intractable. Death usually results from complications or extensive local tumour growth. Diagnosis can be made via a careful rectal examination, which almost always reveals the firm, presacral tumour mass, which is extrarectal and fixed to the sacrum.

Radical resection is the treatment of choice for sacral chordomas. Addition of radiation after subtotal resection improves the disease-free interval, although radiation therapy can generally be used only once. 69,70

### Fractures of the sacrum

The increased incidence of motor vehicle and industrial trauma during recent decades has led to an increase in fractures of the sacrum.

The diagnosis and treatment of these lesions are beyond the scope of this book. However, insufficiency fractures of the sacrum usually develop in the absence of obvious trauma and must therefore be included in the differential diagnosis of sacroiliac lesions. Insufficiency fractures of the sacrum usually occur in elderly women with postmenopausal osteoporosis. They are often confused with disc lesions, spinal stenosis and cauda equina syndrome. Sacroiliac tests are very painful and there is a ‘sign of the buttock’ (see p. 637).

A CT scan is often necessary to demonstrate the fracture line. Treatment consists of rest. 71,72

Access the complete reference list online at www.orthopaedicmedicineonline.com
References


